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Abstract
Coastal flood risk assessments typically ignore interannual to multidecadal variability stemming
from mean sea level, storm surges, and long period tides (i.e. 4.4 year perigean and 18.6 year nodal
cycles), although combined these can lead to significant variations in extreme sea levels (ESL).
Here, we examine the effects of ESL variability on the amplification of flood frequencies and risks
for 17 major U.S. coastal cities. We also quantify the relative importance of ESL variability
compared to long-term relative sea level rise (RSLR). Results show that, depending on the region,
observed ESL variability can lead to amplification factors of up to 79, indicating that the 100 year
return period event can become a 1.26 year event during certain time periods when ESL variability
peaks high. Additionally, depending on the RSLR scenario considered, the observed range of ESL
variability is equivalent to the RSLR projected to occur over the next few years in some locations
and several decades (up to 2100) in others. These ESL fluctuations also modulate flood risk
estimates, with the aggregated 100 year flood losses for the 17 major U.S. coastal cities changing by
up to US$ 141 979 million (or 28%). This study demonstrates the importance of including ESL
variability in regional coastal flood risk assessments; it highlights the importance of being aware
and vigilant of these variations when observed and projected ESL situations are quantified
assuming that certain sea level components are stationary.

1. Introduction

Sea-level rise is the main oceanographic driver for
changes in coastal flood risk and it originates from
changes and fluctuations of different components
such as mean sea level (MSL), storm surges, and
long period tides (e.g. Orton et al 2016, Vitousek
et al 2017, Sayol and Marcos 2018, Muis et al 2019,
Taherkhani et al 2020). Higher frequency tides (e.g.
diurnal and semidiurnal cycles) can also change over
time and lead to increased occurrences of short-term
exceedance events, such as high tide flooding (Devlin
et al 2017, Haigh et al 2020, Talke and Jay 2020).
However, significant tidal changes usually only occur
locally due to anthropogenic impacts, whereas we
are interested in variations that are spatially coher-
ent along the coast. Therefore we only include low
frequency variability in extreme sea levels due to the
4.4 year perigean and 18.6 year nodal tidal cycles
(Haigh et al 2011).While interannual tomultidecadal

variations of these drivers combined may lead to sig-
nificant changes in extreme sea levels (ESL) (Wahl
and Chambers 2015, 2016, Marcos and Woodworth
2017, Rashid et al 2019), these are often ignored
in coastal flood risk assessments. This can poten-
tially lead to the underestimation of flood risk, leav-
ing coastal infrastructure (at certain times over the
anticipated design life) and socio-environmental sys-
tems vulnerable. Rashid et al (2019) (referred to
as R19 hereafter) developed ESL indicators super-
imposing interannual to multidecadal variability of
MSL, storm surge climatology (SSC), and long-
period tides for seven regions along the contiguous
U.S. coast (figure 1). Regions were separated employ-
ing K-means clustering, percent variance explained,
and cross correlation so that interannual to multi-
decadal variability of MSL and SSC of all tide gauges
within each region are coherent in terms magnitude
and timing. The analysis was carried out separately
for the warm season where tropical cyclones occur
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Figure 1. ESL indicators as derived in R19 (and shown as anomalies with mean removed) for regions with coherent ESL
variability for summer (a) and winter (b) seasons. Maps represent the spatial domains of coherent regions (NP: U.S. northern
Pacific coast, SP: U.S. southern Pacific coast, WGOM: western Gulf of Mexico, EGOM: eastern Gulf of Mexico, SA: South Atlantic,
MA: Mid-Atlantic, NA: North Atlantic); for each region R19 identified a representative tide gauge (listed in the panel titles) from
where the regional ESL indicators were derived. Results are shown for model A developed in R19 for the storm surge climatology
component (see section 2 for details).

more often (summer; May–October) and the cold
season where extra-tropical cyclones are more fre-
quent (winter;November–April) to account for storm
surge variations from the different storm characterist-
ics. The ESL indicators represent the combination of
(a) the interannual variability of MSL after removing
the influence of long-term global MSL rise and ver-
tical land motion, (b) the multidecadal variations in
SSC expressed as changes in the 100 year return sea
levels (similar results exist for all other return peri-
ods) after removing the MSL and long period tidal
signals, and (c) the fluctuations of the 4.4 year peri-
gean and 18.6 year nodal tidal cycles. Previous stud-
ies showed that significant variability exists in both
MSL and SSC, and this can often be traced back to
large scale climate variations (Dangendorf et al 2014,
Thompson and Mitchum 2014, Marcos et al 2015,
Wahl and Chambers 2016, Rashid and Wahl 2020);
the role of long period tidal fluctuations in modulat-
ing ESL was also explored for some locations, such
as the Gulf of Maine (Baranes et al 2020). Here we
are the first to use the ESL time series displayed in
figure 1 to assess the (relative) importance of over-
all ESL variability (stemming from different compon-
ents) in modulating extreme event probabilities and
coastal flooding risk.

First, we use the concept of amplification
factor (Buchanan et al 2017, Vitousek et al 2017,
Oppenheimer et al 2019, Frederikse et al 2020) to
quantify how the occurrence frequency of a certain
extreme event (here the 100 year return sea level)
changed in the past due to observed ESL variability
alone. Second, we explore the relative importance
of ESL variability by quantifying the expected time
scales in the future when RSLR would increase by an

amount equivalent to the range of ESL variability.
We also repeat the analysis for the three components
of ESL (i.e. MSL, SSC, and long period tides) separ-
ately to identify the contributions of each component.
Finally, we assess how ESL variability can modulate
flood risk when compared to the stationarity assump-
tion (i.e. ignoring ESL variability). For this purpose
we employ the model introduced by Hallegatte et al
(2013) (referred to as H13 hereafter) and focus on
100 year flood exposure and economic losses for 17
U.S. major coastal cities with populations larger than
one million (in 2005).

2. Data andmethods

In R19 a nonstationary generalized extreme value
(GEV) model was fitted to seasonal (summer and
winter) water level maxima to quantify SSC variab-
ility. Hourly sea level data of tide gauges along the
contiguous U.S. coastline were used. SSC variability
was quantified as the nonstationary 100 year sea level
after removing the effects of MSL and long-period
tides, hence representing the decadal to multidecadal
variability of SSC. Two approaches were adopted: one
considers that only the location parameter of the GEV
distribution varies with time (referred to as model
A) and the other one considers that both the loca-
tion and scale parameters of the GEV distribution are
time varying (referred to as model B), while the shape
parameter is assumed constant for both cases. MSL
variability represents the interannual fluctuations of
MSL after removing the influence of global MSL rise
and vertical land motion. The SSC variability derived
with the two models was then combined with the
MSL variability and long period tidal fluctuations
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Figure 2. Amplification factors (color map) of present-day stationary 100 year sea levels due to observed ESL variability from
1900 to 2017 for regions with coherent ESL variability along the U.S. coastline; results are shown for different seasons (summer
and winter) and models to quantify SSC variability (models A and B). Numbers in brackets denote minimum and maximum
amplification factors. NP: U.S. northern Pacific coast, SP: U.S. southern Pacific coast, WGOM: western Gulf of Mexico, EGOM:
eastern Gulf of Mexico, SA: South Atlantic, MA: Mid-Atlantic, NA: North Atlantic.

to derive the ESL indicators. Figure 1 shows results
for model A where the range of variability reaches
approximately 10–20 cm; for model B (not shown,
see R19 for details) variability is even larger and
also considered here to assess the importance of ESL
variability (Washid et al 2019).

Asmentioned in the introduction, we first explore
how ESL variability modulated the probability of a
certain extreme event in the past. We employ the
concept of amplification factor using the same distri-
butional based frequency transfermethod as in earlier
studies (e.g. Vitousek et al 2017, Oppenheimer et al
2019). The amplification factor indicates the change
of the average occurrence probability of a certain
extreme event (here we chose the 100 year return sea
level). Therefore, an amplification factor of 100 indic-
ates, for example, that the sea level corresponding to
a 100 year return period becomes an annual event.
Amplification factors larger (lower) than 1 indicate
that the occurrence frequency of the selected extreme
event increased (decreased), whereas 1 indicates no
change. Typically, amplification factors are derived
for future RSLR scenarios, but here we quantify in a
first step the amplification factors due to past sea level
changes associated only with ESL variability.We carry
out the analysis separately for the summer and winter
seasons and by using the GEV distribution paramet-
ers from models A and B in R19.

In the next step we explore the relative import-
ance of ESL variability compared to the projected
RSLR derived by Sweet et al (2017) for the U.S. tide
gauges; these sea level scenarios include estimates of
vertical land motion from (Zervas et al 2013) which
are projected into the future. We consider the local
RSLR for the representative tide gauges where the

ESL indicators were defined; we use the intermediate-
low (global mean 0.5 m), intermediate-high (global
mean 1.5 m), and extreme (global mean 2.5 m) scen-
arios, respectively. We quantify the observed range
(i.e. maximum minus minimum) of ESL variability
for each region and estimate when RSLR is expected
to increase by an amount equivalent to the range of
ESL variability. Since the ESL indicators are formu-
lated from three components (i.e. interannual MSL
variability, multidecadal SSC variability, and long
period tidal fluctuations) we repeat the analysis but
considering the range of each individual component.

Finally, we adopt the H13 model to quantify how
ESL variability modulates flood exposure and eco-
nomic losses for 17 major coastal cities. The H13
model uses a stationary extreme value distribution
and estimates flood losses for 136 coastal cities (each
with more than 1 million inhabitants in 2005) glob-
ally, of which 17 are in the U.S. The model com-
bines ESL and future sea-level rise information with
land subsidence, elevation, population, and gross
domestic product data for present-day and under
future socio-economic scenarios (including coastal
adaptation) to quantify flood risk at the city level. In
order to assess the role of ESL variability in modulat-
ing flood risk, wemodify the ESL distributions for the
17 cities by adding the identified range of ESL vari-
ability from the corresponding region. ESL fluctuates
around the center (figure 1) with high or low peaks
which cause increase or decrease in flood risk. Ranges
from the center to the highest and lowest peaks are
considered for analyzing corresponding increase and
decrease in flood risk. The ranges of ESL variability
are different for summer and winter seasons and for
each city we consider the one with the higher range to

3
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Figure 3. RSLR (color map) at representative tide gauges corresponding to regions of coherent ESL variability for three different
RSLR scenarios. Markers represent the time scales when RSLR is expected to reach an amount equivalent to the range of ESL
variability for model A (triangle) and model B (star) for the summer (top row) and winter (bottom row) seasons; note that RSLR
is identical for the same tide gauge in both seasons.

capture the full spectrum of observed ESL variability.
Then we estimate exposure and losses of the 100 year
flood event with the original andmodified ESL distri-
butions and compare the results to quantify how ESL
variability can modify flood risk, assuming present-
day (here 2005) socio-economic conditions. Since we
focus on present day, we do not include scenarios of
sea-level rise, subsidence, and future socio-economic
development.

3. Results

Figure 2 shows the amplification factors for the dif-
ferent regions with coherent ESL variability for differ-
ent seasons (summer and winter) and different mod-
els used to quantify the SSC variability (models A
and B). There were periods in the 20th and early 21st
centuries where ESL variability alone (RSLR is not
included) caused amplification factors between 10
and 100, indicating that the 100 year event (under the
stationarity assumption) was a 1 to 10 year event and
hence more likely to occur during different time peri-
ods in the past. It is also expected that similar changes
occur in the future due to continuing ESL variabil-
ity. Amplification factors vary across regions, seasons,
and models. Larger amplification factors are found
for the regions along the U.S. Pacific coast compared
to the Gulf and east coasts for both models (mod-
els A and B) and seasons. The highest amplification
factors for the U.S. north Pacific and south Pacific
regions were 79.2 and 57.8, respectively. For other
regions amplification factors vary within a range of
1.1–11.8. Note that the amplification factors are not
only impacted by the range of ESL variability, but
also the scale and shape parameters of the extreme
value distribution in the respective region. Regions

with heavy tailed (shape parameter > 0) extreme value
distributions due to large storm surge events show rel-
atively lower amplification factors compared to the
regions with thin tailed distributions (shape para-
meter < 0). There were also periods when amplific-
ation factors were <1 indicating that the stationary
100 year water level was less likely to be exceeded and
turned into the 500 year or 1000 year event.While the
magnitudes of these highs and lows of ESL are cru-
cial in terms of coastal planning and management,
the exact times when they occur are challenging to
predict. This was shown, for example, in Rashid and
Wahl (2020), who explored the applicability of stat-
istical downscaling with initialized decadal climate
model simulations for this purpose. Additionally,
non-oceanographic drivers such as river discharge
directly or indirectly (through nonlinear interactions
with oceanographic drivers) may contribute to ESL
variability leading to amplification of extremes, par-
ticularly in the fresh-water influenced coastal regions
(Buschman et al 2009, Hoitink and Jay 2016). How-
ever, such effects are more local, while our focus is
on the spatially coherent variability that can be traced
back to large-scale climate variations.

Next, we extend the analysis from historical to
future periods, by comparing the historical ESL vari-
ability to future RSLR for the representative tide
gauges of the different regions with coherent vari-
ability (y-axis tick labels in figure 3). While any tide
gauge in a region could be used to derive the local
RSLR, we consider the representative tide gauges
identified in R19 for consistency. We explore the
relative importance of ESL variability compared to
future RSLR (color map in figure 3) by translating
the range of observed ESL variability into time scales
when the equivalent amount of RSLR is expected to
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Figure 4. RSLR (color map) at representative tide gauges corresponding to different regions with coherent ESL variability for three
different RSLR scenarios. Markers represent the time scales when RSLR is expected to reach the amount equivalent to the range of
observed variability of long period tides (star), MSL (triangle), SSC from model A (plus), and SSC from model B (square) for the
summer (top row) and winter (bottom row) seasons; note that RSLR is identical for the same tide gauge in both seasons.

occur (markers in figure 3). The results highlight that,
depending on the region and RSLR scenario con-
sidered, the amount of ESL variability is equivalent to
RSLR that is expected to occur over time scales vary-
ing from a few years up to several decades into the
future (in some instances 2100). As expected, the time
scales are longer for model B compared to model A,
because the estimated SSC variability is relatively lar-
ger for model B.

In order to assess the relative importance of the
three components which contribute to the overall
ESL variability, we repeat the same analysis but sep-
arately to estimate when RSLR reaches the equival-
ent amount of variability stemming from long period
tides, MSL, and SSC (figure 4). Results show that the
variability of long period tides are equivalent to RSLR
that is expected to occur in the 2020s because their
variability is relatively smaller. In contrast, MSL and
SSC variability are more dominant having relatively
larger ranges of variability. Depending on the region
and scenario, MSL variability is equivalent to the
amount of RSLR that is expected to occur in the 2030s
to 2050s, whereas SSC variability in some instances is
equivalent to the amounts of RSLR which are expec-
ted in the 2050s to 2080s (under the intermediate-
high and extreme rise scenarios) or even by 2100
(under the intermediate-low sea-level rise scenario).

Results discussed so far show that there are peri-
ods ranging from years to decades in the historical
recordswhere ESLwere relatively higher or lower than
normal, and that this ESL variability is equivalent to
the RSLR projected to occur in the next few years
up to the end of the 21st century in some instances.
This reveals that ESL variability is also a prominent
driver modulating coastal flood risks during certain
time periods. To assess this further, we employ the

H13 model to estimate flood exposure and losses for
17 major U.S. coastal cities, considering ESL variabil-
ity in addition to the stationary ESL used in the ori-
ginal study by Hallegatte et al (2013). High and low
peaks of ESL fluctuate around the center (figure 1)
causing increase and decrease in flood risk during cer-
tain time periods.

Table 1 exhibits how ESL variability translates to
changes in 100 year flood exposure and losses (inmil-
lion dollars), highlighting significant changes for all
cities considered here, and, as before, with stronger
effects whenmodel B is used to derive the SSC variab-
ility component. In general, cities along the U.S. east
andGulf coasts show larger changes in flood losses (in
terms of absolute values), compared to the U.S. west
coast. However, relative changes in flood losses due to
ESL variability for the cities along the U.S. west coast
are also prominent when compared to the exposure
and losses found inH13 (percentage values are shown
in parentheses in table 1). The regional variability of
changes in flood exposure and losses derived here, not
only depends on the range of ESL variability, but also
differences in topographic gradients, and spatial dis-
tribution of exposed populations and assets. Aggreg-
ated losses (of the 100 year flood event) from the 17
selected U.S. coastal cities increase up to approxim-
ately US$ 14 386 million (model A) and US$ 67 535
million (model B) due to high peaks of ESL, which
represents relative changes of 3% and 13%. On the
other hand, low peaks of ESL reduce the aggreg-
ated flood losses up to approximately US$ 21 253
(model A) and US$ 74 444 (model B), which rep-
resents relative changes of 4% and 14%. This reveals
that the total modulation of flood risk due to the
full range of ESL variability (from lowest peak to
highest peak) in terms of 100 year flood losses are

5



Environ. Res. Lett. 16 (2021) 024026 MM Rashid et al

Ta
bl
e
1.
P
re
se
n
t-
da
y
(2
00
5)

fl
oo

d
ri
sk

(1
00

ye
ar

ev
en
t
ex
po

su
re
an
d
lo
ss
es
w
it
h
ou

t
pr
ot
ec
ti
on

)
fo
r
17

U
.S
.m

aj
or

co
as
ta
lc
it
ie
s
as
su
m
in
g
st
at
io
n
ar
y
E
SL

an
d
th
ei
r
m
od

u
la
ti
on

s
(i
n
cr
ea
se
or

de
cr
ea
se
)
du

e
to

E
SL

va
ri
ab
ili
ty
(h
ig
h
an
d

lo
w
p
ea
ks
).

M
od

u
la

ti
on

of
fl

oo
d

ri
sk

du
e

to
E

SL
va

ri
ab

ili
ty

(U
S$

m
ill

io
n

)

In
cr

ea
se

in
fl

oo
d

ri
sk

du
e

to
h

ig
h

p
ea

k
in

E
SL

va
ri

ab
ili

ty
D

ec
re

as
e

in
fl

oo
d

ri
sk

du
e

lo
w

pe
ak

in
E

SL
va

ri
ab

ili
ty

Fl
oo

d
ri

sk
u

n
de

r
as

su
m

ed
st

at
io

n
-

ar
y

E
SL

(H
13

)
(U

S$
m

ill
io

n
)

M
od

el
A

M
od

el
B

M
od

el
A

M
od

el
B

R
eg

io
n

s
M

aj
or

U
.S

.
co

as
ta

lc
it

ie
s

10
0

ye
ar

ex
po

su
re

10
0

ye
ar

lo
ss

es
10

0
ye

ar
ex

po
su

re
10

0
ye

ar
lo

ss
es

10
0

ye
ar

ex
po

su
re

10
0

ye
ar

lo
ss

es
10

0
ye

ar
ex

po
su

re
10

0
ye

ar
lo

ss
es

10
0

ye
ar

ex
po

su
re

10
0

ye
ar

lo
ss

es

Se
at

tl
e

45
49

27
11

82
(2

%
)

67
(2

%
)

16
0

(4
%

)
13

1
(5

%
)

−1
13

(−
2%

)
−1

04
(−

4%
)

−1
56

(−
3%

)
−1

39
(−

5%
)

N
P

Po
rt

la
n

d
16

68
76

3
45

(3
%

)
49

(6
%

)
67

(4
%

)
72

(9
%

)
−4

5
(−

3%
)

−5
2

(−
7%

)
−4

5
(−

3%
)

−5
2

(−
7%

)
Sa

n
Fr

an
ci

sc
o—

O
ak

la
n

d

15
18

0
58

85
14

11
(9

%
)

72
6

(1
2%

)
14

11
(9

%
)

72
6

(1
2%

)
−2

12
1

(−
14

%
)

−1
03

4
(−

18
%

)
−2

12
1

(−
14

%
)

−1
03

4
(−

18
%

)

Sa
n

Jo
se

12
56

41
4

21
5

(1
7%

)
10

7
(2

6%
)

21
5

(1
7%

)
10

7
(2

6%
)

−2
01

(−
16

%
)

−1
00

(−
24

%
)

−2
01

(−
16

%
)

−1
00

(−
24

%
)

Lo
s

A
n

ge
le

s—
Lo

n
g

B
ea

ch
15

92
6

68
96

65
4

(4
%

)
57

1
(8

%
)

65
4

(4
%

)
57

1
(8

%
)

−1
23

9
(−

8%
)

−8
82

(−
13

%
)

−1
23

9
(−

8%
)

−8
82

(−
13

%
)

SP

Sa
n

D
ie

go
60

9
32

5
35

(6
%

)
17

(5
%

)
35

(6
%

)
17

(5
%

)
−2

6
(−

4%
)

−1
7

(−
5%

)
−2

6
(−

4%
)

−1
7

(−
5%

)
H

ou
st

on
12

95
4

54
83

53
9

(4
%

)
48

0
(9

%
)

31
84

(2
5%

)
24

01
(4

4%
)

−7
74

(−
6%

)
−4

87
(−

9%
)

−4
07

6
(−

31
%

)
−2

35
6

(−
43

%
)

W
G

O
M

N
ew

O
rl

ea
n

s
14

3
96

3
80

28
7

11
65

(1
%

)
16

94
(2

%
)

51
21

(4
%

)
82

77
(1

0%
)

−1
38

1
(−

1%
)

−1
83

7
(−

2%
)

−8
22

9
(−

6%
)

−1
2

20
8

(−
15

%
)

E
G

O
M

Ta
m

pa
—

St
Pe

te
rs

bu
rg

49
59

3
24

95
8

70
4

(1
%

)
56

4
(2

%
)

16
51

9
(3

3%
)

79
43

(3
2%

)
−1

56
5

(−
3%

)
−1

14
3

(−
5%

)
−8

37
4

(−
17

%
)

−6
57

6
(−

26
%

)

SA
M

ia
m

i
36

6
42

1
17

2
16

0
58

22
(2

%
)

49
39

(3
%

)
16

85
1

(5
%

)
98

96
(6

%
)

−1
2

93
9

(−
4%

)
−1

0
20

2
(−

6%
)

−1
9

40
8

(−
5%

)
−1

5
46

5
(−

9%
)

B
al

ti
m

or
e

14
04

2
68

47
15

1
(1

%
)

15
5

(2
%

)
20

72
(1

5%
)

14
02

(2
0%

)
−1

67
(−

1%
)

−1
61

(−
2%

)
−1

52
2

( −
11

%
)

−1
68

2
(−

25
%

)
W

as
h

in
gt

on
,

D
C

54
78

26
54

14
1

(3
%

)
74

(3
%

)
12

52
(2

3%
)

63
4

(2
4%

)
−2

43
(−

4%
)

−1
44

(−
5%

)
−1

01
2

(−
18

%
)

−6
33

(−
24

%
)

V
ir

gi
n

ia
B

ea
ch

61
50

7
27

85
4

22
90

(4
%

)
12

88
(5

%
)

15
89

2
(2

6%
)

11
32

8
(4

1%
)

−2
54

4
(−

4%
)

−1
22

2
(−

4%
)

−2
3

15
0

(−
38

%
)

−8
64

5
(−

31
%

)
P

h
ila

de
lp

h
ia

22
13

2
12

19
2

25
7

(1
%

)
20

3
(2

%
)

24
12

(1
1%

)
15

99
(1

3%
)

−5
13

(−
2%

)
−4

12
(−

3%
)

−2
32

8
(−

11
%

)
−1

95
9

(−
16

%
)

M
A

N
ew

Yo
rk

—
N

ew
ar

k
23

6
53

0
12

9
65

7
30

88
(1

%
)

22
34

(2
%

)
34

15
9

(1
4%

)
20

68
0

(1
6%

)
−3

08
8

(−
1%

)
−2

26
4

(−
2%

)
−2

8
06

6
(−

12
%

)
−2

1
41

7
(−

17
%

)
P

ro
vi

de
n

ce
79

36
42

13
23

6
(3

%
)

17
4

(4
%

)
23

6
(3

%
)

17
4

(4
%

)
−2

32
(−

3%
)

−1
75

(−
4%

)
−3

54
(−

4%
)

−2
62

(−
6%

)
N

A
B

os
to

n
55

44
5

30
96

6
16

59
(3

%
)

10
45

(3
%

)
24

88
(4

%
)

15
78

(5
%

)
−1

65
9

(−
3%

)
−1

01
8

(−
3%

)
−1

65
9

(−
3%

)
−1

01
8

(−
3%

)
To

ta
l

1
01

5
19

1
51

4
26

6
18

49
4

(2
%

)
14

38
6

(3
%

)
10

2
72

7
(1

0%
)

67
53

5
(1

3%
)

−2
8

85
2

(−
3%

)
−2

1
25

3
(−

4%
)

−1
01

96
6

(−
10

%
)

−7
4

44
4

(−
14

%
)

Pe
rc
en
ta
ge

va
lu
es
w
it
h
in

pa
re
n
th
es
es
re
pr
es
en
t
re
la
ti
ve

ch
an
ge
s
co
m
pa
re
d
to

H
13
.

6



Environ. Res. Lett. 16 (2021) 024026 MM Rashid et al

approximately US$ 35 639 (14 386 + 21 253) million
for model A and US$ 141 979 million for model B,
which are equivalent to 7% and 28% of losses found
in H13.

4. Conclusions

In this study we explore how ESL variability from the
combination of interannual to multidecadal variab-
ility of long period tides, MSL, and SSC can modu-
late flood risk. First, we quantify amplification factors
of the present-day 100 year ESL event over the his-
toric period. We identify periods (years to decades)
in the 20th and 21st centuries where amplification
factors ranged from <0.01 (i.e. it was less likely that
the present-day 100 year ESL was exceeded) to >50
(i.e. the 100 year ESL had a return period of less than
2 years). The largest amplification factors were found
for the U.S. north Pacific and south Pacific regions,
with values of 79.2 and 57.8, respectively, indicating
that the 100 year events were 1.26 year and 1.73 year
events. We expect similar ESL variability to continue
to occur in the future along with RSLR and we com-
pare the relative importance of the two.Depending on
the region, RSLR scenario, and extreme value model
used for SSC analysis (models A or B), the range
of ESL variability is equivalent to RSLR expected to
occur in the next few years up to several decades (for
few cases as late as 2100). Finally, we assess the role
of ESL variability in modulating coastal flood risk
by employing the H13 model. We quantify how ESL
variability alone can change 100 year flood exposure
and losses for 17 major U.S. coastal cities. Aggreg-
ated flood losses across all 17 cities can be modu-
lated (from low to high peak of ESL variability) by
approximately US$ 356 639 million (for model A)
and US$ 141 979 million (for model B), or 7% and
28%, respectively. This study reveals the important
role of ESL variability in amplifying the occurrence
frequency of critical ESL events and for modulat-
ing flood exposure and losses in addition to RSLR at
interannual to multidecadal timescales. It is therefore
crucial to be aware of and account for ESL variability
in flood risk assessments, infrastructure design, and
decision-making.
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